Бактериялық коллагеназалар - шолу мақаласы

Main Article Content

A. Kostanova

Ұлттық биотехнология орталығы, Қорғалжын тас жолы, 13/5, Астана қ., 010000, Қазақстан Республикасы

С.Сейфуллин атындағы Қазақ агротехникалық зерттеу университеті» КеАҚ, Жеңіс даңғылы, 62, Астана қ., 010011, Қазақстан Республикасы

kostanova@biocenter.kz

K. Baltin

National center for biotechnology, 13/5, Kurgalzhynskoye road, Astana, 010000, Kazakhstan

baltin@biocenter.kz

Abstract

Бактериялық коллагеназалар - табиғи коллагенді қорыту қабілетіне байланысты жануарлар жасушаларының жасушадан тыс матрицасын бұзуға қатысатын металлопротеиназалар. Бұл ферменттер әртүрлі патогендік бактериялардың вируленттілігінің маңызды факторлары болып табылады. Дегенмен, ғылымда бұл ферменттердің дұрыс және нақты анықталған жіктелуіне қатысты консенсус жоқ және коллагеназаларды дұрыс анықтауға қатысты кең пікірталастар бар. Клостридиальды коллагеназалар бірінші болып сипатталды және жаңадан ашылған коллагенолитикалық ферменттерді салыстыру үшін анықтамалық ферменттер болып табылады. Бұл шолуда бактериялық коллагеназалар туралы ең соңғы деректерді ұсынып, бактериялық коллагеназалардың функционалды-құрылымдық әртүрлілігіне шолу жасалынды. Бұл ақуыздардың табиғаттағы молекулалық әртүрлілігі мен таралуының жалпы көрінісі де беріледі. Әр түрлі протеолитикалық белсенділіктің нақты аспектілері тиісті қолдану салаларында, негізінен биотехнологиялық процестер мен терапевтік мақсаттарда қарастырылады.


 

Keywords:
коллагенеза, фермент, микроорганизм, желатин, гидролизаттар

Article Details

Received 2025-10-05
Accepted 2025-11-13
Published 2024-12-30

References

Kadler, K.E., Baldock, C., Bella, J., Boot-Handford, R.P. Collagens at a glance // Journal of Cell Science. – 2007. – Vol. 120(12). – P. 1955–1958. https://doi.org/10.1242/jcs.03453.

Eckhard, U., Huesgen, P. F., Brandstetter, H., Overall, C.M. Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen // Journal of Proteomics. – 2014. – Vol. 100. – P. 102–114. https://doi.org/10.1016/j.jprot.2013.10.004.

Fields, G.B. Interstitial Collagen Catabolism // Journal of Biological Chemistry. – 2013. – Vol. 288(13). – P. 8785–8793. https://doi.org/10.1074/jbc.r113.451211.

Pal, G.K., Nidheesh, T., Suresh, P.V. Comparative study on characteristics and in vitro fibril formation ability of acid and pepsin soluble collagen from the skin of catla (Catla catla) and rohu (Labeo rohita) // Food Research International. – 2015. – Vol. 76. – P. 804–812. https://doi.org/10.1016/j.foodres.2015.07.018.

Silver, F.H., Freeman, J.W., Seehra, G.P. Collagen self-assembly and the development of tendon mechanical properties // Journal of Biomechanics. – 2003. – Vol. 36(10). – P. 1529–1553. https://doi.org/10.1016/s0021-9290(03)00135-0.

Manka, S.W., Carafoli, F., Visse, R., Bihan, D., Raynal, N., Farndale, R.W., Murphy, G., Enghild, J.J., Hohenester, E., Nagase, H. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1 // Proceedings of the National Academy of Sciences. – 2012. – Vol. 109(31). – P. 12461–12466. https://doi.org/10.1073/pnas.1204991109.

Bilek, S.E., Bayram, S.K. Fruit juice drink production containing hydrolyzed collagen // Journal of Functional Foods. – 2015. – Vol. 14. – P. 562–569. https://doi.org/10.1016/j.jff.2015.02.024.

Lima, C.A., Campos, J.F., Filho, J.L.L., Converti, A., da Cunha, M.G.C., Porto, A.L.F. Antimicrobial and radical scavenging properties of bovine collagen hydrolysates produced by Penicillium aurantiogriseum URM 4622 collagenase // Journal of Food Science and Technology. – 2014. – Vol. 52(7). – P. 4459–4466. https://doi.org/10.1007/s13197-014-1463-y.

Lima, C.A., Filho, J.L.L., Neto, B.B., Converti, A., Carneiro da Cunha, M.G., Porto, A.L.F. Production and characterization of a collagenolytic serine proteinase by Penicillium aurantiogriseum URM 4622: A factorial study // Biotechnology and Bioprocess Engineering. – 2011. – Vol. 16(3). – P. 549–560. https://doi.org/10.1007/s12257-010-0247-0.

Lima, C.A., Viana Marques, D.A., Neto, B.B., Lima Filho, J.L., Carneiro‐da‐Cunha, M.G., Porto, A.L.F. Fermentation medium for collagenase production by Penicillium aurantiogriseum URM4622 // Biotechnology Progress. – 2011. – Vol. 27(5). – P. 1470–1477). https://doi.org/10.1002/btpr.664.

Ruszczak, Z. Collagen as a carrier for on-site delivery of antibacterial drugs // Advanced Drug Delivery Reviews. – 2003. – Vol. 55(12). – P. 1679–1698. https://doi.org/10.1016/j.addr.2003.08.007.

Miles, C.A., Avery, N.C., Rodin, V.V., Bailey, A.J. The Increase in Denaturation Temperature Following Cross-linking of Collagen is Caused by Dehydration of the Fibres // Journal of Molecular Biology. – 2005. – Vol. 346(2). – P. 551–556. https://doi.org/10.1016/j.jmb.2004.12.001.

Xue, Y., Zhang, Y., Zhong, Y., Du, S., Hou, X., Li, W., Li, H., Wang, S., Wang, C., Yan, J., Kang, D.D., Deng, B., McComb, D.W., Irvine, D.J., Weiss, R., Dong, Y. LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing // Nature Communications. – 2024. – Vol. 15(1). – P. 739. https://doi.org/10.1038/s41467-024-45094-5.

Kloskowski, T., Uzarska, M., Gurtowska, N., Olkowska, J., Joachimiak, R., Bajek, A., Gagat, M., Grzanka, A., Bodnar, M., Marszałek, A., Drewa, T. How to isolate urothelial cells? Comparison of four different methods and literature review // Human Cell. – 2013. – Vol. 27(2). – P. 85–93. https://doi.org/10.1007/s13577-013-0070-y.

Shen, P., Wu, P., Maleitzke, T., Reisener, M.-J., Heinz, G. A., Heinrich, F., Durek, P., Gwinner, C., Winkler, T., Pumberger, M., Perka, C., Mashreghi, M.-F., Löhning, M. Optimization of chondrocyte isolation from human articular cartilage to preserve the chondrocyte transcriptome // Frontiers in Bioengineering and Biotechnology. – 2022. – Vol. 10. – P. 1046127. https://doi.org/10.3389/fbioe.2022.1046127.

Rønnov-Jessen, L., Villadsen, R., Edwards, J.C., Petersen, O.W. Differential Expression of a Chloride Intracellular Channel Gene, CLIC4, in Transforming Growth Factor-β1-Mediated Conversion of Fibroblasts to Myofibroblasts // The American Journal of Pathology. – 2002. - Vol. 161(2). – P. 471–480. https://doi.org/10.1016/s0002-9440(10)64203-4.

Low, J.T., Zavortink, M., Mitchell, J.M., Gan, W.J., Do, O.H., Schwiening, C.J., Gaisano, H.Y., Thorn, P. Insulin secretion from beta cells in intact mouse islets is targeted towards the vasculature // Diabetologia. – 2014. – Vol. 57(8). – P. 1655–1663. https://doi.org/10.1007/s00125-014-3252-6.

Ding, L., Sun, Y., Liang, Y., Zhang, J., Fu, Z., Ren, C., Li, P., Liu, W., Xiao, R., Wang, H., Zhang, Z., Yue, X., Li, C., Wu, Z., Feng, Y., Liang, X., Ma, C., Gao, L. Beta‐Cell Tipe1 Orchestrates Insulin Secretion and Cell Proliferation by Promoting Gαs/cAMP Signaling via USP5 // Advanced Science. – 2024. – Vol. 11(16). – P. e2304940. https://doi.org/10.1002/advs.202304940

Haack-Sørensen, M., Johansen, E.M., Højgaard, L.D., Kastrup, J., Ekblond, A. GMP Compliant Production of a Cryopreserved Adipose-Derived Stromal Cell Product for Feasible and Allogeneic Clinical Use // Stem Cells International. – 2022. – Vol. 2022. – P. 1–12. https://doi.org/10.1155/2022/4664917.

Keshtkar, S., Kaviani, M., Jabbarpour, Z., Sabet Sarvestani, F., Ghahremani, M.H., Esfandiari, E., Hossein Aghdaei, M., Nikeghbalian, S., Shamsaeefar, A., Geramizadeh, B., Azarpira, N. Hypoxia-Preconditioned Wharton’s Jelly-Derived Mesenchymal Stem Cells Mitigate Stress-Induced Apoptosis and Ameliorate Human Islet Survival and Function in Direct Contact Coculture System // Stem Cells International. – 2020. – Vol. 2020. – P. 1–14. https://doi.org/10.1155/2020/8857457.

Wu, S., Zhou, X., Jin, Z., Cheng, H. Collagenases and their inhibitors: a review // Collagen and Leather. – 2023. – Vol. 5 (1). – P. 1-20. https://doi.org/10.1186/s42825-023-00126-6.

Farooq, S., Ahmad, M. I., Zheng, S., Ali, U., Li, Y., Shixiu, C., Zhang, H. A review on marine collagen: sources, extraction methods, colloids properties, and food applications // Collagen and Leather. – 2024. – Vol. 6(1). – P. 1-27. https://doi.org/10.1186/s42825-024-00152-y

Gudzenko, O.V., Varbanets, L.D., Ivanytsia, V.O., Shtenikov, M.D. Representatives of Bacillus from Deep-Water Bottom Sediments of the Black Sea – Producers of Elastases, Fibrin(ogen)ases, and Collagenases // Mikrobiolohichnyi Zhurnal. – 2024. – Vol. 86(3). – P. 51–57. https://doi.org/10.15407/microbiolj86.03.051.

Schlapp, M., Friess, W. Collagen/PLGA Microparticle Composites for Local Controlled Delivery of Gentamicin // Journal of Pharmaceutical Sciences. – 2003. – Vol. 92(11). – P. 2145–2151. https://doi.org/10.1002/jps.10460.

Shahidi, F., Janak Kamil, Y.V.A. Enzymes from fish and aquatic invertebrates and their application in the food industry // Trends in Food Science & Technology. – 2001. – Vol. 12(12). – P. 435–464. https://doi.org/10.1016/s0924-2244(02)00021-3.

T.R. Gomes, M., L. Oliva, M., T.P. Lopes, M., E. Salas, C. Plant Proteinases and Inhibitors: An Overview of Biological Function and Pharmacological Activity // Current Protein & Peptide Science. – 2011. – Vol. 12(5). – P. 417–436. https://doi.org/10.2174/138920311796391089.

Lima, C.A., Júnior, A.C.V.F., Filho, J.L.L., Converti, A., Marques, D.A.V., Carneiro-da-Cunha, M.G., Porto, A.L.F. Two-phase partitioning and partial characterization of a collagenase from Penicillium aurantiogriseum URM4622: Application to collagen hydrolysis // Biochemical Engineering Journal. – 2013. – Vol. 75. – P. 64–71. https://doi.org/10.1016/j.bej.2013.03.012.

Lima, C.A., Rodrigues, P.M.B., Porto, T.S., Viana, D.A., Lima Filho, J.L., Porto, A.L.F., Carneiro da Cunha, M.G. Production of a collagenase from Candida albicans URM3622 // Biochemical Engineering Journal. – 2009. – Vol. 43(3). – P. 315–320. https://doi.org/10.1016/j.bej.2008.10.014.

Ohbayashi, N., Yamagata, N., Goto, M., Watanabe, K., Yamagata, Y., Murayama, K. Enhancement of the Structural Stability of Full-Length Clostridial Collagenase by Calcium Ions // Applied and Environmental Microbiology. – 2012. – Vol. 78(16). – P. 5839–5844. https://doi.org/10.1128/aem.00808-12.

Kim, M., Hamilton, S.E., Guddat, L.W., Overall, C.M. Plant collagenase: Unique collagenolytic activity of cysteine proteases from ginger // Biochimica et Biophysica Acta (BBA). – 2007. – Vol. 1770(12). – P. 1627–1635. https://doi.org/10.1016/j.bbagen.2007.08.003.

Raskovic, B., Bozovic, O., Prodanovic, R., Niketic, V., Polovic, N. Identification, purification and characterization of a novel collagenolytic serine protease from fig (Ficus carica var. Brown Turkey) latex // Journal of Bioscience and Bioengineering. – 2014. – Vol. 118(6). – P. 622–627. https://doi.org/10.1016/j.jbiosc.2014.05.020.

Daboor, S.M., Budge, S.M., Ghaly, A.E., Brooks, M.S., Dave, D. Isolation and activation of collagenase from fish processing waste // Advances in Bioscience and Biotechnology. – 2012. – Vol. 03(03). – P. 191–203. https://doi.org/10.4236/abb.2012.33028.

Jafari, H., Lista, A., Siekapen, M.M., Ghaffari-Bohlouli, P., Nie, L., Alimoradi, H., Shavandi, A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering // Polymers. – 2020. – Vol. 12(10). – P. 2230. https://doi.org/10.3390/polym12102230.

Matsushita, O., Yoshihara, K., Katayama, S., Minami, J., Okabe, A. Purification and characterization of Clostridium perfringens 120-kilodalton collagenase and nucleotide sequence of the corresponding gene // Journal of Bacteriology. – 1994. – Vol. 176(1). – P. 149–156. https://doi.org/10.1128/jb.176.1.149-156.1994.

Yoshihara, K., Matsushita, O., Minami, J., Okabe, A. Cloning and nucleotide sequence analysis of the colH gene from Clostridium histolyticum encoding a collagenase and a gelatinase // Journal of Bacteriology. – 1994. – Vol. 176(21). – P. 6489–6496. https://doi.org/10.1128/jb.176.21.6489-6496.1994.

Teramura, N., Tanaka, K., Iijima, K., Hayashida, O., Suzuki, K., Hattori, S., Irie, S. Cloning of a Novel Collagenase Gene from the Gram-Negative Bacterium Grimontia (Vibrio) hollisae 1706B and Its Efficient Expression in Brevibacillus choshinensis // Journal of Bacteriology. – 2011. – Vol. 193(12). – P. 3049–3056. https://doi.org/10.1128/jb.01528-10.

Duarte, A.S., Correia, A., Esteves, A.C. Bacterial collagenases – A review // Critical Reviews in Microbiology. – 2014. – Vol. 42(1). – P. 106–126. https://doi.org/10.3109/1040841x.2014.904270.

Lockhart, R.A., S. Hakakian, C. Tissue Dissociation Enzymes for Adipose Stromal Vascular Fraction Cell Isolation: A Review // Journal of Stem Cell Research & Therapy. – 2015. – Vol. 5(12). – P. 321. https://doi.org/10.4172/2157-7633.1000321.

Wang, Z.-Z., Wang, K., Xu, L.-F., Su, C., Gong, J.-S., Shi, J.-S., Ma, X.-D., Xie, N., Qian, J.-Y. Unlocking the Potential of Collagenase: Structure, Function, and Emerging Therapeutic Horizons // BioDesign Research. – 2024. – Vol. 6. – P. 0050. https://doi.org/10.34133/bdr.0050.

Watanabe, K. Collagenolytic proteases from bacteria // Applied Microbiology and Biotechnology. – 2004. – Vol. 63(5). – P. 520–526. https://doi.org/10.1007/s00253-003-1442-0.

Tran, L.H., Nagano, H. Isolation and Characteristics of Bacillus subtilis CN2 and its Collagenase Production // In Journal of Food Science. – 2002. – Vol. 67(3). – P. 1184–1187. https://doi.org/10.1111/j.1365-2621.2002.tb09474.x.

Petrova, D., Vlahov, S., Dalev, P. Purification and Characterization of a Thermostable Alkaline Collagenase from Thermoactinomyces Sp. E-21 Strain // Biotechnology & Biotechnological Equipment. – 2001. – Vol. 15(2). – P. 31–38. https://doi.org/10.1080/13102818.2001.10819127.

Petrova, D.H., Shishkov, S.A., Vlahov, S.S. Novel thermostable serine collagenase from Thermoactinomyces sp. 21E: purification and some properties // Journal of Basic Microbiology. – 2006. – Vol. 46(4). – P. 275–285. https://doi.org/10.1002/jobm.200510063.

Petrova, D., Derekova, A., Vlahov, S. Purification and properties of individual collagenases from Streptomyces sp. strain 3B // Folia Microbiologica. – 2006. – Vol. 51(2). – P. 93-98. https://doi.org/10.1007/bf02932162.

Suphatharaprateep, W., Cheirsilp, B., Jongjareonrak, A. Production and properties of two collagenases from bacteria and their application for collagen extraction // New Biotechnology. – 2011. – Vol. 28(6). – P. 649–655. https://doi.org/10.1016/j.nbt.2011.04.003.

Zhang, Y., Fu, Y., Zhou, S., Kang, L., Li, C. A straightforward ninhydrin-based method for collagenase activity and inhibitor screening of collagenase using spectrophotometry // Analytical Biochemistry. – 2013. – Vol. 437(1). – P. 46–48. https://doi.org/10.1016/j.ab.2013.02.030.

Sakurai, Y., Inou, H., Nishii, W., Takahashi, T., Iino, Y., Yamamoto, M., Takahashi, K. Purification and Characterization of a Major Collagenase from Streptomyces parvulus // Bioscience, Biotechnology, and Biochemistry. – 2009. – Vol. 73(1). – P. 21–28. https://doi.org/10.1271/bbb.80357.

Thanzami, K., Roy, I. A sensitive, rapid and specific technique for the detection of collagenase using zymography // Eltrophorsis. – 2008. – Vol. 29(7). – P. 1585–1588. https://doi.org/10.1002/elps.200700655.

Okamoto, M., Yonejima, Y., Tsujimoto, Y., Suzuki, Y., Watanabe, K. A thermostable collagenolytic protease with a very large molecular mass produced by thermophilic Bacillus sp. strain MO-1 // Applied Microbiology and Biotechnology. – 2001. – Vol. 57(1-2). – P. 103–108). https://doi.org/10.1007/s002530100731.

Harrington, D.J. Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease // Infection and Immunity. – 1996. – Vol. 64(6). – P. 1885–1891. https://doi.org/10.1128/iai.64.6.1885-1891.1996.

Eckhard, U., Schönauer, E., Ducka, P., Briza, P., Nüss, D., Brandstetter, H. Biochemical characterization of the catalytic domains of three different clostridial collagenases // Biol. Chem. – 2008. - Vol. 390(1). – P. 11–18. https://doi.org/10.1515/bc.2009.004.

Watanabe, K. Collagenolytic proteases from bacteria // Applied Microbiology and Biotechnology. – 2004. – Vol. 63(5). – P. 520–526. https://doi.org/10.1007/s00253-003-1442-0.

Tran, L.H., Nagano, H. Isolation and Characteristics of Bacillus subtilis CN2 and its Collagenase Production // Journal of Food Science. – 2002. – Vol. 67(3). – P. 1184–1187. https://doi.org/10.1111/j.1365-2621.2002.tb09474.x.

Preet Kaur, S., Azmi, W. Cost Effective Production of a Novel Collagenase from a Non-Pathogenic Isolate Bacillus tequilensis // Current Biotechnology. – 2013. – Vol. 2(1). – P. 17–22. https://doi.org/10.2174/2211550111302010004.

Wu, Q., Li, C., Li, C., Chen, H., Shuliang, L. Purification and Characterization of a Novel Collagenase from Bacillus pumilus Col-J // In Applied Biochemistry and Biotechnology. – 2009. – Vol. 160(1). – P. 129–139. https://doi.org/10.1007/s12010-009-8673-1.

Duarte, A.S., Correia, A., Esteves, A.C. Bacterial collagenases – A review // Critical Reviews in Microbiology. – 2014. – Vol. 42(1). – P. 106–126. https://doi.org/10.3109/1040841x.2014.904270.

Nidheesh, T., Gaurav Kumar, P., Suresh, P.V. Enzymatic degradation of chitosan and production of d-glucosamine by solid substrate fermentation of exo-β-d-glucosaminidase (exochitosanase) by Penicillium decumbens CFRNT15 // International Biodeterioration & Biodegradation. – 2015. – Vol. 97. – P. 97–106. https://doi.org/10.1016/j.ibiod.2014.10.016.

Nidheesh, T., Pal, G.K., Suresh, P.V. Chitooligomers preparation by chitosanase produced under solid state fermentation using shrimp by-products as substrate // Carbohydrate Polymers. – 2015. – Vol. 121. – P. 1–9. https://doi.org/10.1016/j.carbpol.2014.12.017.

Stanford, N.J., Millard, P., Swainston, N. RobOKoD: microbial strain design for (over)production of target compounds // Frontiers in Cell and Developmental Biology. – 2015. – Vol. 3. – P. 17. https://doi.org/10.3389/fcell.2015.00017.

Thadathil, N., Velappan, S.P. Recent developments in chitosanase research and its biotechnological applications: A review // In Food Chemistry. – 2014. – Vol. 150. – P. 392–399. https://doi.org/10.1016/j.foodchem.2013.10.083.

Ohbayashi, N., Matsumoto, T., Shima, H., Goto, M., Watanabe, K., Yamano, A., Katoh, Y., Igarashi, K., Yamagata, Y., Murayama, K. Solution Structure of Clostridial Collagenase H and Its Calcium-Dependent Global Conformation Change // In Biophysical Journal. – 2013. – Vol. 104(7). – P. 1538–1545. https://doi.org/10.1016/j.bpj.2013.02.022.

Baehaki, A., Sukarno, Syah, D., Setyahadi, S., & Suhartono, M. T. Production and Characterization of Collagenolytic Protease from Bacillus licheniformis F11.4 Originated from Indonesia // Asian Journal of Chemistry. – 2014. – Vol. 26(10). – P. 2861–2864. https://doi.org/10.14233/ajchem.2014.15863.

Tamai, E., Miyata, S., Tanaka, H., Nariya, H., Suzuki, M., Matsushita, O., Hatano, N., Okabe, A. High-level expression of his-tagged clostridial collagenase in Clostridium perfringens // Appl. Microbiol. Biotechnol. – 2008. – Vol. 80(4). – P. 627–635. https://doi.org/10.1007/s00253-008-1592-1.

Fancher, C.A., Thames, H.T., Colvin, M.G., Zhang, L., Nuthalapati, N., Kiess, A., Dinh, T. T.N., Sukumaran, A.T. Research Note: Prevalence and molecular characteristics of Clostridium perfringens in “no antibiotics ever” broiler farms // Poultry Science. – 2021. – Vol. 100(11). – P. 101414. https://doi.org/10.1016/j.psj.2021.101414.

Traore, E.J., Wang, W., Yafi, F.A., Hellstrom, W.J. G. Collagenase Clostridium histolyticum in the management of Peyronie’s disease: a review of the evidence // Therapeutic Advances in Urology. – 2016. – Vol. 8(3). – P. 192–202. https://doi.org/10.1177/1756287216637569.

Ikeuchi, T., Yasumoto, M., Takita, T., Tanaka, K., Kusubata, M., Hayashida, O., Hattori, S., Mizutani, K., Mikami, B., Yasukawa, K. Crystal structure of Grimontia hollisae collagenase provides insights into its novel substrate specificity toward collagen // Journal of Biological Chemistry. – 2022. – Vol. 298(8). – P. 102109. https://doi.org/10.1016/j.jbc.2022.102109.

Daboor, S.M., Budge, S.M., Ghaly, A.E., Brooks, S. Dave, D. Extraction and Purification of Collagenase Enzymes: A Critical Review // American Journal of Biochemistry and Biotechnology. – 2010. - Vol. 6(4). – P. 239–263. https://doi.org/10.3844/ajbbsp.2010.239.263.

Kemp, C.M., Sensky, P.L., Bardsley, R.G., Buttery, P.J., Parr, T. Tenderness – An enzymatic view // Meat Science. – 2010. – Vol. 84(2). – P. 248–256. https://doi.org/10.1016/j.meatsci.2009.06.008.

Hopkins, D.L., Allingham, P.G., Colgrave, M., van de Ven, R.J. Interrelationship between measures of collagen, compression, shear force and tenderness // Meat Science. – 2013. – Vol. 95(2). – P. 219–223. https://doi.org/10.1016/j.meatsci.2013.04.054.

Hopkins, D.L., Lamb, T.A., Kerr, M.J., van de Ven, R.J. The interrelationship between sensory tenderness and shear force measured by the G2 Tenderometer and a Lloyd texture analyser fitted with a Warner–Bratzler head // Meat Science. – 2013. – Vol. 93(4). – P. 838–842. https://doi.org/10.1016/j.meatsci.2012.11.052.

Allen Foegeding, E., Larick, D.K. Tenderization of beef with bacterial collagenase // Meat Science. – 1986. – Vol. 18(3). – P. 201–214. https://doi.org/10.1016/0309-1740(86)90034-3.

Ha, M., Bekhit, A.E.-D., Carne, A., Hopkins, D.L. Characterisation of kiwifruit and asparagus enzyme extracts, and their activities toward meat proteins // Food Chemistry. – 2013. – Vol. 136(2). – P. 989–998. https://doi.org/10.1016/j.foodchem.2012.09.034.

Millr, A.J., Strang, E.D., Whiting, R.C. Improved Tenderness of Restructured Beef Steaks by a Microbial Collagenase Derived from Vibrio B‐30 // Journal of Food Science. – 1989. – Vol. 54(4). – P. 855–857. https://doi.org/10.1111/j.1365-2621.1989.tb07898.x.

Zhao, G.-Y., Zhou, M.-Y., Zhao, H.-L., Chen, X.-L., Xie, B.-B., Zhang, X.-Y., He, H.-L., Zhou, B.-C., Zhang, Y.-Z. Tenderization effect of cold-adapted collagenolytic protease MCP-01 on beef meat at low temperature and its mechanism // Food Chemistry. – 2012. – Vol. 134(4). – P. 1738–1744. https://doi.org/10.1016/j.foodchem.2012.03.118.

Suphatharaprateep, W., Cheirsilp, B., Jongjareonrak, A. Production and properties of two collagenases from bacteria and their application for collagen extraction // New Biotechnology. – 2011. – Vol. 28(6). – P. 649–655. https://doi.org/10.1016/j.nbt.2011.04.003.

Lafarga, T., Hayes, M. Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients // Meat Science. – 2014. – Vol. 98(2). – P. 227–239. https://doi.org/10.1016/j.meatsci.2014.05.036.

Lafarga, T., O’Connor, P., Hayes, M. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis // Peptides. – 2014. – Vol. 59. – P. 53–62. https://doi.org/10.1016/j.peptides.2014.07.005.

Daneault, A., Coxam, V., Wittrant, Y. Biological Effect of Hydrolyzed Collagen on Bone Metabolism // Critical Reviews in Food Science and Nutrition. – 2017. – Vol. 57(9). – P. 1922-1937. https://doi.org/10.1080/10408398.2015.1038377.

Sai-Ut, S., Benjakul, S., Sumpavapol, P., Kishimura, H. Antioxidant Activity of Gelatin Hydrolysate Produced from Fish Skin Gelatin Using Extracellular Protease from Bacillus amyloliquefaciens H11 // Journal of Food Processing and Preservation. – 2014. – Vol. 39(4). – P. 394–403. https://doi.org/10.1111/jfpp.12244.

Rosen, H. A modified ninhydrin colorimetric analysis for amino acids // Archives of Biochemistry and Biophysics. – 1957. – Vol. 67(1). – P. 10–15. https://doi.org/10.1016/0003-9861(57)90241-2.