The role of beneficial soil microorganisms in mitigating detrimental effects of salinity stress in Allium fistulosum

Main Article Content

P. Chakravarty

Pasteur Laboratory, Glendora, California 

microbiology99@gmail.com

C. Zhang

Pasteur Laboratory, Glendora, California 

microbiology99@aol.com

Abstract

In the last few decades, sea levels have risen mainly because of global warming. This has caused flooding and increased salinity in low-laying coastal agricultural lands. As a result of salinity, crop production is seriously reduced. The present study evaluated the effects of an arbuscular mycorrhizal fungus, Rhizophagus irregularis and a rhizospheric bacterium, Pseudomonas flourescens, alone and in dual inoculation on the survival, growth, mycorrhizal colonization, nutrient uptake, glomalin production, and  soil aggregation of scallion plants under saline conditions. In saline soils, seedling survival, growth, total biomass, nutrient uptake, glomalin production, and soil aggregation were significantly increased when inoculated with R. irregularis and P. flourescens. Dual inoculation with R. irregularis and P. flourescens were superior than single inoculation. Pseudomonas flourescens stimulated mycorrhizal colonization in saline soils. The present results indicate that arbuscular mycorrhizal fungi and beneficial rhizospheric bacteria offer potential for mitigating salinity stress in A. fistulosum.

Keywords:
Global warming, Salinity tolerance, Pseudomonas fluorescents, Rhizophagus irregularis , scallion

Article Details

Received 2025-07-10
Accepted 2025-09-14
Published 2024-12-30

References

The Intergovernmental Panel on Climate Change (2022) Sea level rise and implications for low-lying islands, coasts and communities. doi: https://www.ipcc.ch/srocc/chapter/chapter-4-sea-level-rise-and-implications-for-low-lying-islands-coasts-and-communities/

United Nations (2022) World at a crossroads’ as droughts increase nearly a third in a generation // UN News. Global perspective Human stories. https://news.un.org/en/story/2022/05/1118142

Karmakar, R., Das, I., Dutta, D., Rakshit, A. Potential effects of climate change on soil properties: a review // Sci. Intl. – 2016. – Vol. 4. – P. 51-73. https://doi.org/10.17311/sciintl.2016.51.73.

Munns. R., Gilliham, M, Salinity tolerance of crops-what is the cost? // New Phytol. – 2015. – Vol. 208. – P. 668-673. https://doi.org/10.1111/nph.13519.

Munns, R., Tester, M. Mechanisms of salinity tolerance // Ann. Rev. Plant. Biol. – 2008. – Vol. 59. – P. 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911.

Rahman, A.K.M.M., Ahmed, K.M., Butler, A.P., Hoque, M.A. Influence of surface geology and micro-scale land use on the shallow subsurface salinity in deltaic coastal areas: a case from Bangladesh // Env. Earth. Sci. – 2018. – Vol. 77. – P. 423. https://doi.org/10.1007/s12665-018-7594-0.

Bannari, A., Al-Ali, Z.M. Assessing climate change impact on soil salinity dynamics between 1987-2017 in arid landscape using Landsat TM , ETM + and OLI data // Remote Sen. – 2020. – Vol. 12. – P. 2794. https://doi.org/10.3390/rs12172794.

Brown, M.E., Antle, P., Backlund, E.R., Carr, W.E., Easterling, M.K., Walsh, C., Ammann, W., Attavanich, C.B., Barrett, M.F., Bellemare, V., Dancheck, C., Funk, K., Grace, J.S.I., Ingram, H., Jiang, H., Maletta, T., Mata, A., Murray, M., Ngugi, D., Ojima, B., O’Neill, K., Tebaldi, C. Climate change, global food security, and the US food system // Joint publication by U.S. Department of Agriculture, the Univ. Corpo. Atmosp. Res., and National Cent Atmosp. Rese. – 2015. – P. 146. https://doi.org/10.7930/J0862DC7.

European Commission CORDIS EU Research Results. Plants in search of water: physiological and molecular interplay between root hydraulics and architecture during drought stress // Horoizon 2022. https://cordis.europa.eu/project/id/657374.

Blaylock, A.D. Soil salinity, salt tolerance and growth potential of horticultural and landscape plants. Co-operative Extension Service, University of Wyoming, Department of Plant, Soil and Insect Sciences, College of Agriculture, Laramie, Wyoming. – 1994.

Yamaguchi, T., Blumwald, E. Developing salt-tolerant crop plants: challenges and opportunities // Trends Plant. Sci. – 2005. – Vol. 10. – P. 615-620. https://doi.org/10.1016/j.tplants.2005.10.002.

Shahbaz, M., Ashraf, M. Improving Salinity Tolerance in Cereals // Critic. Rev. Plant Sci. – 2013. – Vol. 32. – P. 237- 249. https://doi.org/10.1080/07352689.2013.758544.

Fuzy, A., Kovacs, R., Cseresnyes, I., Paradi, I., Szili Kovacs, T., Kelemen, B., Rajkai, K., Takacs, T. Selection of plant physiological parameters to detect stress effects in pot experiments using principal component analysis // Acta Physiol. Plantarum. – 2019. – Vol. 41. – P. 56. https://doi.org/10.1007/s11738-019-2842-9.

Ahmed, P., Ahanger, M.A., Alyemeni, M.N., Wijaya, L., Egamberdieva, D., Bhardwaj, R.M., Ashraf, M. Zink application mitigates the adverse effect of NaCl stress on mustard (Brassica juncea L.) through modulating compitable organic solutes, antioxidant enzymes, and flavonoid content // J. Plant Interact. – 2017. – Vol. 12. – P. 429-437. https://doi.org/10.1080/17429145.2017.1385867.

Ahmed, P., Ahanger, M.A., Alam, P., Alyemeni, M.N., Wijaya, L., Ali, S., Ashraf, M. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean (Vigna radiate L. Wilczek) through the modifications of physio-biochemical attributes and key antioxidantenzymes // J. Plant Growth Regul. – 2019. – Vol. 38. – P. 70-82. https://doi.org/10.1007/s00344-018-9810-2.

Pozo, M.J., Azcon-Aguilar, C. Unraveling mycorrhiza-induced resistance // Cur. Op. Plant Biol. – 2007. – Vol. 10. – P. 393-398. https://doi.org/10.1016/j.pbi.2007.05.004.

Tavakkoli, E., Fatehi, F., Conventry, S., Rengasamy, P., McDonald, G.K. Additive effects of Na+ and Cl- ions on barley growth under salinity stress // J. Expt. Botany. – 2011. – Vol. 62. – P. 2189-2203. https://doi.org/10.1093/jxb/erq422.

Geilfus, C.M. Chloride: from Nutrient to Toxicant // Plant Cell Physiol. – 2018. – Vol. 59. – P. 877-886. https://doi.org/10.1093/pcp/pcy071.

Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., Barea, J.M. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility // Biol. Ferti. Soils. – 2003. – Vol. 37. – P. 1-16. https://doi.org/10.1007/s00374-002-0546-5.

Gianinazzi, S., Gollotte, A., Binet, M.N., Tuinen, D., Redecker, D., Wipf, D. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services // Mycorrhiza. – 2010. – Vol. 20. – P. 519-530. https://doi.org/10.1007/s00572-010-0333-3.

Barzana, G., Aroca, R., Paz, J.A., Chaumont, F., Ballesta, M.C., Carvajal, M. Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plants under both well-watered and drought stress conditions // Ann. Bot. – 2012. – Vol. 109. – P. 1009-1017. https://doi.org/10.1093/aob/mcs007.

Bárzana, G., Aroca, R., Bienert, G.P., Chaumont, F., Ruiz-Lozano, J.M. New insights into the regulations of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance // Molecular plant-microbe interactions. – 2014. – Vol. 27(4). – P. 349-363. https://doi.org/10.1094/MPMI-09-13-0268-R.

Smith, S.E., Read, D. Mycorrhizal symbiosis.3rd Edition. Academic Press, New York, 2008. https://www.elsevier.com/books/mycorrhizal-symbiosis/smith/978-0-12-370526-6.

Wagg, C., Jansa, J., Stadler, M., Schmid, B., Van der Heijden, M.G.A. Mycorrhizal fungal identity and biodiversity relaxes plant-plant competition // Ecol. – 2011. – Vol. 92. – P. 1303-1313. https://doi.org/10.1890/10-1915.1.

Etemadi, M., Gutjahr, C., Couzigou, J.M., Zouine, M., Lauredssergues, D., Timmers, T. Auxin perception is required for arbuscle development in arbuscular mycorrhizal symbiosis // Plant Physiol. – 2014. – Vol. 166. – P. 281-292. https://doi.org/10.1104/pp.114.246595.

Auge, R.M., Stodola, A.J.W., Tims, J.E., Saxton, A.M. Moisture-retention properties of a mycorrhizal soil // Plant Soil. – 2001. – Vol. 230. – P. 87-97. https://doi.org/10.1023/A:1004891210871.

Auge, R.M., Toler, H.D., Saxton, A.A. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta analysis // Front. Plant. Sci. – 2014. – Vol. 5. – P. 562. https://doi.org/10.3389/fpls.2014.00562.

Daynes, C.N., Field, D.J., Saleeba, J.A., Cole, M.A., McGee, P.A. Development and stabilization of soil structure via interactions between organic matter, arbuscular mycorrhizal fungi and plant roots // Soil Biol. Biochem. – 2013. – Vol. 57. – P. 683-694. https://doi.org/10.1016/j.soilbio.2012.09.020.

Kaushik, P., Sandhu, O.S., Brar, N.S., Kumar, V., Malhi, G.S., Hari, K., Saini, I. Soil metagenomics: prospects and challenges. In: Mycorrhizal fungi-utilization in agriculture and industry // Intech. Open. – 2020. – Vol. 10. – P. 1-18. https://doi.org/10.5772/intechopen.93306.

Malhi, G.S., Kaur, M., Kaushik, P., Alyemeni, M.N., Alsahli, A.A., Ahmed, P. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach // Saudi J. Biolo. Sci. – 2021. – Vol. 28. – P. 1465-1476. https://doi.org/10.1016/j.sjbs.2020.12.001.

Bhattacharyya, P.N., Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture // World J. Microbiol. Biotech. – 2012. – Vol. 28. – P. 1327-1350. https://doi.org/10.1007/s11274-011-0979-9.

Almaghrabi, O.A., Abdelmoneim, T.S., Albishri, H.M., Moussa, T.A.A. Enhancement of maize growth using some plant growth promoting rhizobacteria (PGPR) under laboratory laboratory conditions // Life Sci. J. – 2014. – Vol. 11. – P. 764-772.

Prittesh, P., Krunal, M., Krupal, P. Isolation, screening, and characterization of PGPR from rhizosphere of rice // Internatl. J. Pure. Appl. Biosci. – 2017. – Vol. 5. – P. 264-270. https://doi.org/10.18782/2320-7051.2887.

Santos, R.M., Kandasamy, S., Rigobelo, E.C. Sugarcane growth and nutrition levels are differentially affected by the application of PGPR and cane waste // Microbiol Open. – 2018. – Vol. 7(6). – P. e00617. https://doi.org/10.1002/mbo3.617.

Verma, P., Yadav, J., Nath, K., Lavakush, T., Singh, T. Impact of plant growth promoting rhizobacteria on crop production // Intl. J. Agric. Res. – 2010. – Vol. 5. – P. 954-983. https://doi.org/10.3923/ijar.2010.954.983.

Boddey, R.M., Dobereiner, J. Nitrogen fixation associated with grasses and cereals: Recent progress and perspectives for the future // Ferti. Res. – 1995. – Vol. 42. – P. 241–250. https://doi.org/10.1007/BF00750518.

Velivelli, S.L.S., Sessitsch, A., Prestwich, B.D. The Role of Microbial Inoculants in Integrated Crop Management Systems // Potato Res. – 2014. – Vol. 57. – P. 291–309. https://doi.org/10.1007/s11540-014-9278-9.

Adesemoye, A.O., Torbert, H.A., Kloepper, J.W. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers // Microb. Ecol. – 2009. – Vol. 58. – P. 921-929. https://doi.org/10.1007/s00248-009-9531-y.

Islam, R.M., Tahera, S., Melvin, J., Woojong, Y., Jang-Cheon, C., Tongmin, S. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper // J. Basic. Microbiol. – 2013. – Vol. 53. – P. 1004-1015. https://doi.org/10.1002/jobm.201200141.

Sbrana, C., Avio, L., Giovannetti, M. Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals // Electrophor. – 2014. – Vol. 35. – P. 88-95. https://doi.org/10.1002/elps.201300568.

Massa, N., Cesaro, P., Todeschini, V., Capraro, J., Scarafoni, A., Cantamessa, S., Copetta, A., Anastasia, F., Gamalero, E., Lingua, G. Selected autochthonous rhizobia, applied in combination with AM fungi, improve seed quality of common bean cultivated in reduced fertilization condition // Appl. Soil. Ecol. – 2020. – Vol. 148. – P. 23-38. https://doi.org/10.1016/j.apsoil.2020.103507.

Khatoon, Z., Huang, S., Farooq, M.A., Santoyo, G., Rafique, M., Javed, S., Gul, B. Role of plant growth-promoting bacteria (PGPB) in abiotic stress management. In: Mitigation of Plant Abiotic Stress by Microorganisms. Edited by Santoyo G., Kumar A., Aamir M., Sivakumar Uthandi S. – 2022. – P. 257-272. Acad. Press, NY. https://doi.org/10.1016/B978-0-323-90568-8.00012-2.

Yadav, V.K., Jha, R.K., Kaushik, P., Altalayan, F.H., Balawi, T.A., Alam, P. Traversing arbuscular mycorrhizal fungi and Pseudomonas flourescens for carrot production under salinity // Saudi J. Biol. Sci. – 2021. – Vol. 28. – P. 4217-4223. https://doi.org/10.1016/j.sjbs.2021.06.025.

Chakravarty, P., Zhang, C. Drought stress alleviation: The contribution of a soil bacterium and an arbuscular mycorrhizal fungus in scallion // Intl. J. Agric. Environ. Res. – 2024. – Vol. 10. – P. 599-619.

Phillips, J.M., Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection // Trans. Br. Mycol. Soci. – 1970. – Vol. 55. – P. 158-161. https://doi.org/10.1016/S0007-1536(70)80110-3.

Giovannetti, M., Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots // New Phytol. – 1980. – Vol. 84. – P. 489-500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x.

Wu, S., Feng, X., Wittmeier, A. Microwave digestion of plant and grain reference material in nitric acid and hydrogen peroxide for the determination of multi-elements by inductively coupled plasma mass spectrometry // J. Atomic. Spect. – 1997. – Vol. 12. – P. 797-806. https://doi.org/10:1039/A607217H.

Yan, Q., Duan, Z.Q., Mao, J.D., Li, X., Fei, D. Effects of root zone temperature and N, P. K supplies on nutrient uptake cucumber (Cucumis sativas L.) seedlings in hydroponics // Soil. Sci. Plant. Nutri. – 2012. – Vol. 58. – P. 707-717. https://doi.org/10.1080/00380768.2012.733925.

Janos, D.P., Garamszegi, S., Beltran, B. Glomalin extraction and measurement // Soil. Biol. Biochem. – 2008. – Vol. 40. – P. 728-739. https://doi.org/10.1016/j.soilbio.2007.10.007.

Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding // Ann. Biochem. – 1976. – Vol. 72. – P. 248-254. https://doi.org/10.1006/abio.1976.9999.

Zar, J.H. Biostatistical Aanlysis. 2nd ed. Englewood Cliffs (N.J): Prentice-Hall, 1984.

SAS Institute Inc. SAS user’s guide. Carry. N.C. SAS Institute Inc. ed. 14.2, 2016.

Food and Agricultural Organization. Status of the world’s resource (SWSR) – Main Report, United Nations, Rome. Food and Agric. Org., 2015. https://www.fao.org/documents/card/en/c/c6814873-efc3-41db-b7d3-2081a10ede50/

Gupta, B., Huang, B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization // Intl. J. Genomics. – 2014. – P. 7011596. https://doi.org/10.1155/2014/701596.

Hernandez, I.A. Salinity tolerance in plants: Trends and prospective // Intl. J. Mol. Sci. – 2019. – Vol. 20(10). – P. 2408. https://doi.org/10.3390/ijms20102408.

Van Zelm, E., Zhang, Y., Testerink, C. Salt tolerance mechanisms of plants // Ann. Rev. Plant. Biol. – 2020. – Vol. 71. – P. 403-433. https://doi.org/10.1146/annurev-arplant-050718-100005.

Van der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., Sanders, I.R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity // Nature. – 1998. – Vol. 396. – P. 69-72. https://doi.org/10.1038/23932.

Gianinazzi, S., Gollotte, A., Binet, M.N., Tuinen, D., Redecker, D., Wipf, D. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services // Mycorrhiza. – 2010. – Vol. 20. – P. 519–530. https://doi.org/10.1007/s00572-010-0333-3.

Iqbal, N., Ashraf, M., Ashraf, M., Azam, F. Effect of exogenous application of glycinebetaine on capitulum size and achene number of sunflower under water stress // Intl. J. Biol. Biotech. – 2005. – Vol. 2. – P. 765–771.

Mascher, R., Nagy, E., Lippmann, B., Hornlein, S., Fischer, S., Scheiding, W., Neagoe, A., Bergmann, H. Improvement of tolerance to paraquat and drought in barley (Hordeum vulgare L.) by exogenous 2-aminoethanol: effects on superoxide dismutase activity and chloroplast ultrastructure // Plant Sci. – 2005. – Vol. 168. – P. 691–698. https://doi.org/10.1016/j.plantsci.2004.09.036.

Smith, S.E., Facelli, E., Pope, S., Smith, F.A. Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas // Plant Soil. – 2010. – Vol. 326. – P. 3-29. https://doi.org/10.1007/s11104-009-9981-5.

Foud, M.O., Essahibi, A., Benhiba, L., Qaddoury, A. Effectiveness of arbuscular mycorrhizal fungi in the protection of olve plants against oxidative stress induced by drought // Spanish. J. Agric. Res. – 2014. – Vol. 12. – P. 763-771. https://doi.org/10.5424/sjar/2014123-4815.

Pavithra, D., Yapa, N. Arbuscular mycroohizal fungi inoculation enhances drought stress tolerance of plants // Ground Water Sustain. – 2018. – Vol. 7. – P. 490-494. https://doi.org/10.1016/j.gsd.2018.03.005.

Evelin, H., Devi, T.S., Gupta, S., Kapoor, R. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges // Front. Plant. Sci. – 2019. – Vol. 12. – P. 1-21. https://doi.org/10.3389/fpls.2019.00470.

Pereira, S.I.A., Abreu, D., Moreira, H., Vega, A., Castro, P.M.L. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions // Heliyon. – 2020. – Vol. 6. – P. 1-9. https://doi.org/10.1016/j.heliyon.2020.e05106.

Ullah, A., Bano, A., Khan, N. Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress // Front. Sustain. Food. Syst. – 2021. – Vol. 5. – P. 1-16. https://doi.org/10.3389/fsufs.2021.618092.

Li, Y., Xu, J., Hu, J., Zhang, T., Wu, X., Yang, Y. Arbuscular Mycorrhizal Fungi and Glomalin Play a Crucial Role in Soil Aggregate Stability in Pb-Contaminated Soil // Intl. J. Environ. Res. Public Health. – 2022. – Vol. 9. – P. 5029-5044. https://doi.org/10.3390/ijerph19095029.

Sanchez, B.M.J., Ferrandez, T., Morales, M.A., Morte, A., Alarcon, J.J. Variations in water status, gas exchange, and growth in Rosmarinus officinalis planted infected with Glomus deserticola under drought conditions // J. Plant. Physiol. – 2004. – Vol. 161. – P. 675-682. https://doi.org/10.1078/0176-1617-01191.

Correia, M.J., Coelho, D., David, M.M. Response to seasonal drought in three cultivars of Ceratonia siliqua: Leaf growth and water relations // Tree Physiol. – 2001. – Vol. 21. – P. 645-653. https://doi.org/10.1093/treephys/21.10.645.

Singh, B., Usha, K. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress // Plant Growth. Regu. – 2003. – Vol. 39. – P. 137–141. https://doi.org/10.1023/A:1022556103536.

Querejeta, J.I., Egerton-Warburton, L.M., Prieto, I., Vargas, R., Allen, M.F. Changes in soil hyphal abundance and visbility can alter the patterns of hydraulic redistribution by plant roots // Plant Soil. – 2012. – Vol. 335. – P. 63-73. https://doi.org/10.1007/s11104-011-1080-8.

Gong, M., Tang, M., Chen, H., Zhang, Q., Feng, X. Effect of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress // New. For. – 2013. – Vol. 44. – P. 399-408. https://doi.org/10.1007/s11056-012-9349-1.

Boutasknit, A., Mohamed, M.B., Mokhtar, A.E., Laouane, R.B., Douira, A., Cherkaoui, E., Modafar, I., Mitsui, T., Said Wahbi, S., Meddich, A. Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and in organic adjustments // Plants. – 2020. – Vol. 9. – P. 1-19. https://doi.org/10.3390/plants9010080.

Ruiz-Lozano, J.M., Porcel, R., Azcon, C., Aroca, R. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies // J. Exp. Bot. – 2012. – Vol. 63. – P. 695-709. https://doi.org/10.1093/jxb/ers126.

Auge, R.M., Stodola, A.J.W., Tims, J.E., Saxton, A.M. Moisture-retention properties of a mycorrhizal soil // Plant Soil. – 2001. – Vol. 230. – P. 87-97. https://doi.org/10.1023/A:1004891210871.

Auge, R.M., Toler, H.D., Saxton, A.A. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta analysis // Front. Plant. Sci. – 2014. – Vol. 5. – P. 562. https://doi.org/10.3389/fpls.2014.00562.

Khalloufi, M., Martinez, C.A., Lachaal, M., Bouraoui Alfocea, F.A., Albacete, A. The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance // J. Plant. Physiol. – 2017. – Vol. 214. – P. 134-144. https://doi.org/10.1016/j.jplph.2017.04.012.

Driver, J.D., Holben, W.E., Rilling, M.C. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi // Soil. Biochem. – 2005. – Vol. 37. – P. 101-106. https://doi.org/10.1016/j.soilbio.2004.06.011.

Kemper, W.D., Rosenau, R.C. Aggregate stability and size distribution. In: Klute, A. Ed., Methods of soil analysis. Part 1. Agronom Monograph 9. 2nd ed., Madison, Wisconsin, 1986. – P. 425-442.

Rilling, M.C. Arbuscular mycorrhizae, glomalin, and soil aggregation // Can. J. Soil. Sci. – 2004. – Vol. 4. – P. 355-363. http://dx.doi.org/10.4141/S04-003.

Rilling, M.C., Steinberg, P.D. Glomalin production by an arbuscular mycorrhizal fungus: mechanism of habitat modification // Soil. Biol. Biochemi. – 2002. – Vol. 34. – P. 1371-1374. http://dx.doi.org/10.1016/S0038-0717(02)00060-3.

Bedini, S., Pellergino, E., Avio, L., Pellergino, S., Bazzoffi, P., Argese, E., Giovannetti, M. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomas mossae and Glomas intraradices // Soil. Biol. Biochem. – 2009. – Vol. 41. – P. 1491-1496. http://dx.doi.org/10.1016/j.soilbio.2009.04.005.

Wang, S., Wu,. QS., He, X.H. Exogenous easily extratable glomalin-related soil protein promotes aggregation, relevant soil enzyme activities and plant growth in trifoliate orange // Plant Soil. Env. – 2015. – Vol. 61. – P. 66-71. https://doi.org/10.17221/833/2014-PSE.

Vanwindekens, F.M., Hardy, B.F. The Quanti Slake Test, measuring soil structural stability by dynamic weighing of undisturbed samples immersed in water // Soil. – 2023. – Vol. 9. – P. 573-591. https://doi.org/10.5194/soil-9-573-2023.