Effects of chronic stress on antioxidant defense system and liver function in male albino rats
Main Article Content
Dorcas Olasimbo Owolabi
Department of Biology, University of Ilesa, Ilesa, Osun State, Nigeria
dorcas_owolabi@unilesa.edu.ng
Emmanuel Olusegun Thomas
Department of Pure and Applied Zoology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
segunthomas24@gmail.com
Daniel Oluwole Fawumi
Department of Biological Science, Olusegun Agagu University of Science and Technology, Okitipupa, Ondo State, Nigeria
danielfawumi@gmail.comAbstract
Stress is becoming prevalent in our world today, its effects on physiological processes is a major concern. This research investigates the effects of chronic stress on the antioxidant defense system and liver function in male albino rats. Eighteen male albino rats were used for the study. They were divided into three groups: control group, group exposed to force swimming, and group subjected to social isolation. Following a four-week stress protocol, the rats' liver enzymes and antioxidant levels were determined using spectrophotometric assays. It was revealed from the findings of this work that rats exposed to swimming stress showed significant increases in liver enzymes, including alanine aminotransferase (ALT) levels (54.46 ±0.46 U/L) compared to controls (26.79 ±1.20 U/L), and aspartate aminotransferase (AST) levels (71.30±1.30 U/L) compared to controls (22.17 ±0.17 U/L) . Additionally, antioxidant enzymes like superoxide dismutase (SOD) increased to 197.14 ±2.14 units with swimming stress compared to controls (65.71±0.70 units), and catalase activity rose to 48.29±0.29 kU compared to controls (29.78±0.08 kU). The findings suggest that chronic stress can lead to liver damage and oxidative stress, with swimming stress having a greater impact than isolation stress. These results have implications for understanding the impact of chronic stress on liver function and overall health.
Article Details
Accepted 2025-09-22
Published 2025-09-22
References
Ranabir S., Reetu K. Stress and hormones // Indian Journal of Endocrinology and Metabolism. – 2011. – Vol. 15(3). – P. 193-199. https://doi.org/10.4103/2230-8210.77573
Publication manual of the American Psychological Association (7th ed.), 2020. Available online: https://jems.davnepal.edu.np/storage/files/shares/Online%20Resources/American%20Psychological%20Association%20-%20Publication%20Manual%20of%20the%20American%20Psychological%20Association,%20Seventh%20Edition%20(2020)%20[with%20PDF%20bookmarks]-American%20Psychological%20Association%20(2020).pdf (accessed on 10 June 2025)
Kabat-Zinn J. Mindfulness-based interventions in context: Past, present, and future. Clinical Psychology // Science and Practice. – 2003. – Vol. 10(2). – P. 144-156. https://doi.org/10.1093/clipsy.bpg016
Mayer E.A., Ryu, H.J., Bhatt, R.R. The neurobiology of irritable bowel syndrome // Molecular psychiatry. – 2023. – Vol. 28(4). – P. 1451–1465. https://doi.org/10.1038/s41380-023-01972-w
Sies H. Oxidative stress: Concept and some practical aspects // Antioxidants. – 2020. – Vol. 9(9). – P. 852. https://doi.org/10.3390/antiox9090852
Corona-Pérez A., Díaz-Muñoz M., Cuevas-Romero E., Luna-Moreno D., Valente-Godínez H., Vázquez-Martínez O., Martínez-Gómez M., Rodríguez-Antolín J., Nicolás-Toledo L. Interactive effects of chronic stress and a high-sucrose diet on nonalcoholic fatty liver in young adult male rats // Stress (Amsterdam, Netherlands). – 2017. – Vol. 20(6). – P. 608–617. https://doi.org/10.1080/10253890.2017.1381840
Stojiljković V., Todorović A., Kasapović J., Pejić S., Pajović S.B. Antioxidant enzyme activity in rat hippocampus after chronic and acute stress exposure // Annals of the New York Academy of Sciences. – 2005. – Vol. 1048. – P. 373–376. https://doi.org/10.1196/annals.1342.042
Mumtaz F., Khan M.I., Zubair M., Dehpour A.R. Neurobiology and consequences of social isolation stress in animal model – A comprehensive review // Biomedicine and Pharmacotherapy. – 2018. – Vol. 105. – P. 1205-1222. https://doi.org/10.1016/j.biopha.2018.05.086
Birben E., Sahiner U.M., Sackesen C., Erzurum S., Kalayci O. Oxidative stress and antioxidant defense // World Allergy Organization Journal. – 2012. – Vol. 5(1). – P. 9-19. https://doi.org/10.1097/WOX.0b013e3182439613
Vere C.C., Streba C.T., Streba L.M., Ionescu A.G., Sima F. Psychosocial stress and liver disease status // World journal of gastroenterology. – 2009. – Vol. 15(24). – P. 2980–2986. https://doi.org/10.3748/wjg.15.2980
Porsolt R.D., Bertin A., Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants // Archives Internationales de Pharmacodynamie et de Therapie. – 1977. – Vol. 229(2). – P. 327-336.
Fone K.C., Porkess M.V. Behavioral and neurochemical effects of post-weaning social isolation in rodents – Relevance to developmental neuropsychiatric disorders // Neuroscience & Biobehavior Recviews. – 2008. – Vol. 32(6). – P. 1087-1102. https://doi.org/10.1016/j.neubiorev.2008.03.003
Reitman S., Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases // American Journal of Clinical Pathology. – 1957. – Vol. 28(1). – P. 56-63. https://doi.org/10.1093/ajcp/28.1.56
Bessey O.A., Lowry O.H., Brock M.J. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum // Journal of biological chemistry. – 1946. – Vol. 164(1). – P. 321-329.
Marklund S., Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase // European Journal of Biochemistry. – 1974. – Vol. 47(3). – P. 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
Aebi H. Catalase in vitro // Methods in Enzymology. – 1984. – Vol. 105. – P. 121-126. https://doi.org/10.1016/s0076-6879(84)05016-3
Paglia D.E., Valentine W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase // Journal of Lanoratory and Clinical Medicine. – 1967. – Vol. 70(1). – P. 158-169.
Ellman G.L. Tissue sulfhydryl groups // Archives of Journal of Biochemistry and Biophysics. – 1959. – Vol. 82(1). – P. 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
Sapolsky R.M., Romero L.M., Munck A.U. How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions // Endocrine Reviews. – 2000. – Vol. 21(1). – P. 55-89. https://doi.org/10.1210/edrv.21.1.0389
Cohen S., Janicki-Deverts D., Miller G.E. Psychological Stress and Disease // JAMA. – 2012. – Vol. 298(14). – P. 1685-1687. https://doi.org/10.1001/jama.298.14.1685
Giboney P.T. Mildly elevated liver transaminase levels in the asymptomatic patient // American Family Physician. – 2005. – P. 71(6). – P. 1105-1110.
Tian Z., Chen Y., Gao B. Natural killer cells in liver disease // Hepatology (Baltimore, Md.). – 2013. – Vol. 57(4). – P. 1654–1662. https://doi.org/10.1002/hep.26115
Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx): Their fundamental role in the entire antioxidant defence grid // Alexandria Journal of Medicine. – 2018. – Vol. 54(4). – P. 287-293. https://doi.org/10.1016/j.ajme.2017.09.001
Jiang S., Guo T., Guo S., Gao J., Ni Y., Ma W., Zhao R. Chronic Variable Stress Induces Hepatic Fe(II) Deposition by Up-Regulating ZIP14 Expression via miR-181 Family Pathway in Rats // Biology. – 2021. – Vol. 10(7). – P. 653. https://doi.org/10.3390/biology10070653
Akhtar M., Pillai K.K., Vohora D. Effect of thioperamide on modified forced swimming test-induced oxidative stress in mice // Basic & clinical pharmacology & toxicology. – 2005. – Vol. 97(4). – P. 218–221. https://doi.org/10.1111/j.1742-7843.2005.pto_140.x
Geddie H., Cairns M., Smith L., van Wyk M., Beselaar L., Truter N., Rautenbach F., Marnewick J.L., Joseph D.E., Essop M.F. The impact of chronic stress on intracellular redox balance: A systems level analysis // Physiological reports. – 2023. – Vol. 11(7). – P. e15640. https://doi.org/10.14814/phy2.15640
de Haan J.B., Bladier C., Griffiths P., Kelner M., O'Shea R.D., Cheung N.S., Bronson R.T., Silvestro M.J., Wild S., Zheng S.S., Beart P.M., Hertzog P.J., Kola I. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide // The Journal of biological chemistry. – 1998. – Vol. 273(35). – P. 22528–22536. https://doi.org/10.1074/jbc.273.35.22528