Study of cultural and biochemical properties of Penicillium candidum strain

##plugins.themes.bootstrap3.article.main##

A. Lyubakivskaya

Department of Microbiology and Biotechnology, S. Seifullin Kazakh Agrotechnical Research University, Astana, Kazakhstan.

lyubak.alexandra@gmail.com

A.B. Begenova

Department of Microbiology and Biotechnology, S. Seifullin Kazakh Agrotechnical Research University, Astana, Kazakhstan.

begenova_73@mail.ru

G.M. Otepova

Department of Microbiology and Biotechnology, S. Seifullin Kazakh Agrotechnical Research University, Astana, Kazakhstan.

arsen_arlan@mail.ru

##article.abstract##

The article presents the results of the study of morphological, cultural, and biochemical properties of the Penicillium candidum strain isolated from salami. The strain was cultivated on various nutrient media to assess the nature of its growth and the structure of the mycelium. On solid media, differences in the color, shape, and surface of colonies were observed. The best growth was noted on potato and honey agars, where colonies exhibited radial furrows and a wrinkled surface. In liquid media, dense mycelial globules formed in the absence of surface and wall-associated growth. Biochemical studies showed that Penicillium candidum degrades glucose and maltose, weakly ferments lactose, and exhibits urease activity. In antagonistic tests, the strain demonstrated the ability to inhibit the growth of Bacillus spp., forming a growth inhibition zone with a diameter of 24 mm. The concentration of the antibiotic substance was 10.6 µg/ml. Thus, the Penicillium candidum strain demonstrates high biochemical activity and antagonistic properties, confirming its potential for application in the food industry as a biopreservative or technological culture.

##article.subject##:
nutrient media, Penicillium candidum, morphological properties, cultural properties, antagonistic properties

##plugins.themes.bootstrap3.article.details##

##plugins.generic.dates.received## 2025-11-14
##plugins.generic.dates.accepted## 2025-12-26
##plugins.generic.dates.published## 2024-12-30

Библиографические ссылки

Boualem, K., Waché, Y., Garmyn, D., Karbowiak, T., Durand, A., Gervais, P., Cavin, J. F. Cloning and expression of genes involved in conidiation and surface properties of Penicillium camemberti grown in liquid and solid cultures // Research in Microbiology. – 2008. – Vol. 159(2). – P. 110–117. https://doi.org/10.1016/j.resmic.2007.10.004.

Bodinaku, I., Shaffer, J., Connors, A. B., Steenwyk, J. L., Biango-Daniels, M. N., Kastman, E. K., Rokas, A., Robbat, A., Wolfe, B. E. Rapid Phenotypic and Metabolomic Domestication of Wild Penicillium Molds on Cheese // mBio. – 2019. – Vol. 10(5). – P. 02445-19. https://doi.org/10.1128/mBio.02445-19.

Ropars, J., Caron, T., Lo, Y. C., Bennetot, B., Giraud, T. La domestication des champignons Penicillium du fromage [The domestication of Penicillium cheese fungi] // C. R. Biol. – 2020. – Vol. 343, № 2. – P. 155–176. French. https://doi.org/10.5802/crbiol.15.

Gibbons, J. G. How to Train Your Fungus // mBio. – 2019. – Vol. 10(6). – P. 03031-19. https://doi.org/10.1128/mBio.03031-19.

Ropars, J., Didiot, E., Rodríguez de la Vega, R.C., Bennetot, B., Coton, M., Poirier, E., Coton, E., Snirc, A., Le Prieur, S., Giraud, T. Domestication of the Emblematic White Cheese-Making Fungus Penicillium camemberti and Its Diversification into Two Varieties // Current Biology. – 2020. – Vol. 30(22). – P. 4441–4453.e4. https://doi.org/10.1016/j.cub.2020.08.082.

Caron, T., Piver, M.L., Péron, A.C., Lieben, P., Lavigne, R., Brunel, S., Roueyre, D., Place, M., Bonnarme, P., Giraud, T., Branca, A., Landaud, S., Chassard, C. Strong effect of Penicillium roqueforti populations on volatile and metabolic compounds responsible for aromas, flavor and texture in blue cheeses // International Journal of Food Microbiology. – 2021. – Vol. 354. – P. 109174. https://doi.org/10.1016/j.ijfoodmicro.2021.109174.

Ropars, J., Giraud, T. Convergence in domesticated fungi used for cheese and dry-cured meat maturation: Beneficial traits, genomic mechanisms, and degeneration // Current Opinion in Microbiology. – 2022. – Vol. 70. – P. 102236. https://doi.org/10.1016/j.mib.2022.102236.

Petersen, C., Sørensen, T., Nielsen, M.R., Sondergaard, T.E., Sørensen, J.L., Fitzpatrick, D.A., Frisvad, J.C., Nielsen, K.L. Comparative genomic study of the Penicillium genus elucidates a diverse pangenome and 15 lateral gene transfer events // IMA Fungus. – 2023. – Vol. 14(1). – P. 3. https://doi.org/10.1186/s43008-023-00108-7.

De Respinis, S., Caminada, A., Pianta, E., Buetti-Dinh, A., Riva Scettrini, P., Petrini, L., Tonolla, M., Petrini, O. Fungal communities on alpine cheese rinds in Southern Switzerland // Botanical Studies. – 2023. – Vol. 64(1). – P. 6. https://doi.org/10.1186/s40529-023-00371-2.

Łopusiewicz, Ł., Drozłowska, E., Tarnowiecka-Kuca, A., Bartkowiak, A., Mazurkiewicz-Zapałowicz, K., Salachna, P. Biotransformation of Flaxseed Oil Cake into Bioactive Camembert-Analogue Using Lactic Acid Bacteria, Penicillium camemberti and Geotrichum candidum // Microorganisms. – 2020. – Vol. 8(9). – P. 1266. https://doi.org/10.3390/microorganisms8091266.

Judacewski, P., Los, P. R., Benvenutti, L., Alberti, A., Simões, D. R., Nogueira, A. Quality assessment of white mold-ripened cheeses manufactured with different lactic cultures // Journal of the Science of Food and Agriculture. – 2016. – Vol. 96(11). – P. 3831–3837. https://doi.org/10.1002/jsfa.7577.

Notermans, S., Wieten, G., Engel, H. W., Rombouts, F. M., Hoogerhout, P., van Boom, J. H. Purification and properties of extracellular polysaccharide (EPS) antigens produced by different mould species // Journal of Applied Bacteriology. – 1987. – Vol. 62, № 2. – P. 157–166. https://doi.org/10.1111/j.1365-2672.1987.tb02394.x.

Ertas Onmaz, N., Gungor, C., Al, S., Dishan, A., Hizlisoy, H., Yildirim, Y., Kasap Tekinsen, F., Disli, H. B., Barel, M., Karadal, F. Mycotoxigenic and phylogenetic perspective to the yeasts and filamentous moulds in mould-matured Turkish cheese // International Journal of Food Microbiology. – 2021. – Vol. 357. – P. 109385. https://doi.org/10.1016/j.ijfoodmicro.2021.109385.

Anelli, P., Dall'Asta, C., Cozzi, G., Epifani, F., Carella, D., Scarpetta, D., Brasca, M., Moretti, A., Susca, A. Analysis of composition and molecular characterization of mycobiota occurring on surface of cheese ripened in Dossena's mine // Food Microbiology. – 2024. – Vol. 123. – P. 104587. https://doi.org/10.1016/j.fm.2024.104587.

Fröhlich-Wyder, M.T., Arias-Roth, E., Jakob, E. Cheese yeasts // Yeast. – 2019. – Vol. 36(3). – P. 129–141. https://doi.org/10.1002/yea.3368.

Irlinger, F., Mariadassou, M., Dugat-Bony, E., Rué, O., Neuvéglise, C., Renault, P., Rifa, E., Theil, S., Loux, V., Cruaud, C., Gavory, F., Barbe, V., Lasbleiz, R., Gaucheron, F., Spelle, C., Delbès, C. A comprehensive, large-scale analysis of "terroir" cheese and milk microbiota reveals profiles strongly shaped by both geographical and human factors // ISME Communications. – 2024. – Vol. 4(1). – P. ycae095. https://doi.org/10.1093/ismeco/ycae095.

Nielsen, J.C., Grijseels, S., Prigent, S., Ji.B., Dainat, J., Nielsen, K.F., Frisvad, J.C., Workman, M., Nielsen, J. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species // Nature Microbiology. – 2017. – Vol. 2. – P. 17044. https://doi.org/10.1038/nmicrobiol.2017.44.

Joardar, V., Abrams, N.F., Hostetler, J., Paukstelis, P.J., Pakala, S., Pakala, S.B., Zafar, N., Abolude, O.O., Payne, G., Andrianopoulos, A., Denning, D.W., Nierman, W.C. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability // BMC Genomics. – 2012. – Vol. 13. – P. 698. https://doi.org/10.1186/1471-2164-13-698.

Houbraken, J., de Vries, R.P., Samson, R.A. Modern taxonomy of biotechnologically important Aspergillus and Penicillium species // Advances in Applied Microbiology. – 2014. – Vol. 86. – P. 199–249. https://doi.org/10.1016/B978-0-12-800262-9.00004-4.

Ropars, J., Rodríguez de la Vega, R. C., López-Villavicencio, M., Gouzy, J., Sallet, E., Dumas, É., Lacoste, S., Debuchy, R., Dupont, J., Branca, A., Giraud, T. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi // Current Biology. – 2015. – Vol. 25(19). – P. 2562–2569. https://doi.org/10.1016/j.cub.2015.08.025.

Dumas, E., Feurtey, A., Rodríguez de la Vega, R.C., Le Prieur, S., Snirc, A., Coton, M., Thierry, A., Coton, E., Le Piver, M., Roueyre, D., Ropars, J., Branca, A., Giraud, T. Independent domestication events in the blue-cheese fungus Penicillium roqueforti // Molecular Ecology. – 2020. – Vol. 29(14). – P. 2639–2660. https://doi.org/10.1111/mec.15359.

Monnet, C., Landaud, S., Bonnarme, P., Swennen, D. Growth and adaptation of microorganisms on the cheese surface // FEMS Microbiology Letters. – 2015. – Vol. 362(1). – P. 1-9. https://doi.org/10.1093/femsle/fnu025.

Visagie, C.M., Houbraken, J., Frisvad, J.C., Hong, S., Klaassen, C.H., Perrone, G., Seifert, K.A., Varga, J., Yaguchi, T., Samson, R.A. Identification and nomenclature of the genus Penicillium // Studies in Mycology. – 2014. – Vol. 78. – P. 343–371. https://doi.org/10.1016/j.simyco.2014.09.001.

Lessard, M.H., Viel, C., Boyle, B., St-Gelais, D., Labrie, S. Metatranscriptome analysis of fungal strains Penicillium camemberti and Geotrichum candidum reveal cheese matrix breakdown and potential development of sensory properties of ripened Camembert-type cheese // BMC Genomics. – 2014. – Vol. 15. – P. 235. https://doi.org/10.1186/1471-2164-15-235.