Genetic diversity of Botritis cinerea revealed by sequencing and identification of B. otrytis cinerea isolates in strawberries of Almaty region

Main Article Content

S.K. Nayekova

L.N. Gumilyov Eurasian National University, Astana, Kazakhstan.

n.saltan@mail.ru

Zh.A. Tulegenova

L.N. Gumilyov Eurasian National University, Astana, Kazakhstan.

zhan.ta@mail.ru

A.Zh. Zhaxylykov

S.Seifullin Kazakh Agrotechnical Research University, Astana, Kazakhstan.

alikhanzhaxylykov33@gmail.com

Zh.I. Kuanbay

K. Zhubanov Aktobe Regional University, Aktobe, Kazakhstan.

zhenia_80@bk.ru

A.B Ismagulova

S.Seifullin Kazakh Agrotechnical Research University, Astana, Kazakhstan

altynai14.02@mail.ru

A.K. Ospanova

A. Margulan Pavlodar Pedagogical University, Pavlodar, Kazakhstan

ospain@mail.ru

E. Cafer

Isparta University of Applied Sciences, Isparta, Turkiye.

cafereken@hotmail.ru

Abstract

This article discusses the isolation and identification of 8 isolates of strawberry gray mold pathogens from four varieties in
the Almaty region: Vivara, Murano, Serofline and Albion. The morpho-cultural characteristics of the isolated Botrytis cinerea
(B. cinerea) strains were studied, and the rates of radial colony growth in various nutrient media were determined. Percent
identity of eight Botrytis cinerea isolates ranged from 95.4% to 100%. For most isolates, percent identity exceeded 99%,
indicating a high degree of genetic conservatism in the ITS regions. An exception was isolate K12 (PI = 95.4%), which exhibited
minor nucleotide variations that, however, did not affect the taxonomic classification. The isolated strains were deposited in
the GenBank database maintained by the National Center for Biotechnology Information (NCBI): B. cinerea K1-PV226173.1,
B. cinerea K2-PV226178.1, B. cinerea K9-PV203239.1, B. cinerea K12- PV203241.1, B. cinerea K13-PV203240.1, B. cinerea
K24-PV203243.1, B. cinerea K27-PV203242.1, B. cinerea K28-PV203244.1. The constructed phylogenetic tree shows that
B. cinerea forms a large monophyletic cluster with high intraspecific variability, which confirms its wide distribution. Other
Botrytis species form polyphyletic and stable groups, reflecting their taxonomic isolation.

Keywords:
Botrytis cinerea;, phytopathogens;, gray mold;, strawberry

Article Details

Received 2025-03-18
Accepted 2025-03-28
Published 2025-03-31

References

Ismagulova A., Spanbayev A., Tulegenova Zh., Eken C. First Report of Preharvest Fruit Rot of Strawberry Caused by Botrytis cinerea in Kazakhstan // Plant Disease – 2020. – Vol. 105(1). – P. 70. https://doi.org/10.1094/PDIS-03-20-0525-PDN

Ismagulova A.B., Tulegenova Zh., Spanbaev A.D. Research on Botrytis cinerea-caused gray rot disease in strawberries with Carpathian genus bees and entomovector technology // Bulletin of Karaganda University. Series "Biology. Medicine. Geography." – 2024. – Vol.2. – P. 29-41. https://doi.org/10.31489/2024bmg2/29-41

Minaeva L.P., Evsjukova A.D., Koltsov V.A., Zhidekhina T.V., Sedova I.B., Chalyy Z.A., Efimochkina N.R., Sheveleva S.A. Contamination of Fresh Berries and Fruits with Mycotoxins Sold on the Consumer Market of the Central Region of Russia // Health Risk Analysis. – 2022. – P. 87-99. https://doi.org/10.21668/health.risk/2022.4.08.eng

Lugauskas A., Stakeniene J. Toxin producing micromycetes on fruit, berries, and vegetables // Ann. Agric. Environ. Med. – 2002. – Vol. 9(2). – P. 83–97.

Wakiewicz A., Irzykowska L., Bocianowski J. At al. Fusariotoxins in asparagus – their biosynthesis and migration // Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. – 2013. – Vol. 30(7). – P. 1332–8. https://doi.org/10.1080/19440049.2013.796095

Kiseleva M.G., Chalyy Z.A., Sedova I.B., Minaeva L.P., Sheveleva S.A. Studying the contamination of tea and herbal infusions with myсotoxins (Message 2) // Health Risk Analysis. – 2020. – Vol. 1. – P. 38–51. https://doi.org/10.21668/health.risk/2020.1.04.eng

Fernández-Cruz M.L., Mansilla M.L., Tadeo J.L. Mycotoxins in fruits and their processed products: Analysis, occur-rence and health implications // J. Adv. Res.-2010. – Vol. 1(2). – P. 113–122. https://doi.org/10.1016/j.jare.2010.03.002

Alshannaq A., Yu J.-H. Occurrence, toxicity, and analysis of major mycotoxins in food // Int. J. Environ. Res. Public Health. – 2017. – Vol. 14(6). – P. 632. https://doi.org/10.3390/ijerph14060632

Eskola M., Kos G., Elliott C.T., Hajslova J., Mayar S., Krska R. Worldwide contamination of food-crops with myco-toxins: Validity of the widely cited ‘FAO estimate’ of 25 % // Critical Reviews in Food Science and Nutrition. – 2020. – Vol. 60(16). – P. 2773–2789. https://doi.org/10.1080/10408398.2019.1658570

Juan C., Chamari K., Manes J. Evaluation of Alternaria mycotoxins: quantification and storage condition // Food Additives and Contaminants: Part A. – 2016. – Vol. 35. – P. 861–868. https://doi.org/10.1080/19440049.2016.1177375

Rychlik M., Lepper H., Weidner C., Asam S. Risk evaluation of the Alternaria mycotoxin tenuazonic acid in foods for adults and infants and subsequent risk management // Food Control. – 2016. – Vol. 68. – P.81–185. https://doi.org/10.1016/j.foodcont.2016.03.035

Solfrizzo M. Recent advances on Alternaria mycotoxins // Current Opinion in Food Science. – 2017. – Vol. 17. – P. 57–61. https://doi.org/10.1016/j.cofs.2017.09.012

Walker, A.S., Gladieux, P., Decognet, V., Fermaud, M., Confais, J., Roudet, J., Bardin, M., Bout, A., Nicot, P. C., Poncet, C., Fournier, E. Population structure and temporal maintenance of the multihost fungal pathogen Botrytis cinerea: causes and implications for disease management // Environmental microbiology. – 2015. – Vol. 17(4). – P. 1261–1274. https://doi.org/10.1111/1462-2920.12563.

Andersen B., Thrane U. Foodborne fungi in fruit and cereals and their production of mycotoxins // Advances in Food Mycology. – 2006. – Vol. 571. – P. 137–152. https://doi.org/10.1007/0-387-28391-9_8

Microbial Food Safety. In: O.A. Oyarzabal, S. Backert eds. New York, Springer. – 2012. – P. 262. https://doi.org/10.1007/978-1-4614-1177-2

Vybornova M.V., Polunina T.S., Lavrinova V.A. Micobiota of currant berries // Nauchnye trudy Severo-Kavkazskogo Federal'nogo nauchnogo tsentra sadovodstva, vinogradarstva, vinodeliya. – 2020. – Vol. 29. – P. 122–126. https://doi.org/10.30679/2587-9847-2020-29-122-126

Enikova R.K., Stoynovska M.R., Karcheva M.D. Mycotoxins in Fruits and Vegetables // J. of IMAB. – 2020. – Vol. 26(2). – P. 3139–3143. https://doi.org/10.5272/jimab.2020262.3139

Gonçalves B.L., Coppa C.F.S.C., de Neeff D.V., Corassin C.H., Fernandes Oliveira C.A. Mycotoxins in fruits and fruit-based products: occurrence and methods for decontamination // Toxin Reviews. – 2013. – Vol. 38(4). – P. 263–272. https://doi.org/10.1080/15569543.2018.1457056

Tournas V.H., Katsoudas E. Mould and yeast flora in fresh berries, grapes and citrus fruits // International Journal of Food Microbiology. – 2005. – Vol. 105. – P. 11–17. https://doi.org/10.1016/j.ijfoodmicro.2005.05.002

Meena M., Gupta S.K., Swapnil P., Zehra A., Dubey M.K., Upadhyay R.S. Alternaria toxins: potential virulence factors and genes related to pathogenesis // Front. Microbiol. – 2017. – Vol. 8. – P. 1451. https://doi.org/10.3389/fmicb.2017.01451

Fekete E., Fekete E., Irinyi L., Karaffa L. Genetic diversity of a Botrytis cinerea cryptic species complex in Hungary // Microbiol. – Vol. 167. – P. 283-291. https://doi.org/10.1016/j.micres.2011.10.006

Gruber-Dorninger C., Novak B., Nagl V., Berthiller F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants // J. Agric. Food Chem. – 2017. – Vol. 65(33). – P. 7052–7070. https://DOI:10.1021/acs.jafc.6b03413

Fraeyman S., Croubels S., Devreese M., Antonissen G. Emerging Fusarium and Alternaria Mycotoxins: Occurrence, Toxicity and Toxicokinetics // Toxins. – 2017. – Vol. 9(7). – P. 228. https://DOI:10.3390/toxins9070228

Medina A., Rodríguez A., Magan N. Climate change and mycotoxigenic fungi: impacts on mycotoxin production // Current Opinion in Food Science. – 2015. – Vol. 5. – P. 99–104. https://DOI:10.1016/j.cofs.2015.11.002

Panimboza Yanzapanta, J. G. Patogenicidad y susceptibilidad in vitro a fungicidas de Botrytis cinerea Pers. Causante del Moho gris en el cultivo de Fragaria vesca I cv. Albion. (Tesis de grado. Ingeniero Agrónomo) // Escuela Superior Politécnica de Chimborazo. Riobamba – Ecuador. – 2017. http://dspace.espoch.edu.ec/handle/123456789/7649

Rupp S., Weber R.W.S., Rieger D., Detzel P., Hahn M. Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture // Front. Microbiol. – 2017. – Vol. 7. – P.1-12. https://doi.org/10.3389/fmicb.2016.02075.

Garfinkel, A. R., Lorenzini, M., Zapparoli, G., & Chastagner, G. A. Botrytis euroamericana, a new species from peony and grape in North America and Europe. – Mycologia. – Vol. 109(3). – P. 495–507. https://doi.org/10.1080/00275514.2017.1354169

Daugaard H. Effect of cultural methods on the occurrence of grey mould (Botrytis cinerea Pers.) in strawberries // Biological Agriculture and Horticulture. – 2000. – Vol. 18(1). – P. 77–83. https://doi.org/10.1080/01448765.2000.9754866