Identification, pathogenicity and antifungal susceptibility of sea buckthorn fungal pathogens
Main Article Content
Abstract
This study presents a comprehensive identification and characterization of fungal pathogens that affect sea buckthorn (Hippophae rhamnoides). Utilizing microbiological methods, biochemical analyses, molecular genetic diagnostics – including PCR and DNA sequencing – and pathogenicity testing, three species of phytopathogenic fungi were identified: Aureobasidium pullulans, Didymella glomerata, and Epicoccum nigrum. The pathogenicity of these fungi towards sea buckthorn was experimentally confirmed. An evaluation of the isolates' sensitivity to six antifungal agents (terbinafine, nystatin, ketoconazole, clotrimazole, itraconazole, and fluconazole) indicated notable species-specific differences in susceptibility to fungicidal effects. The findings enhance our understanding of the etiology of fungal diseases affecting sea buckthorn and can inform the development of effective strategies for phytosanitary control and plant protection.
Article Details
Accepted 2025-03-28
Published 2025-03-31
References
Wang, Z., Zhao, F., Wei, P., Chai, X., Hou, G., Meng, Q. Phytochemistry, health benefits, and food applications of sea buckthorn (Hippophae rhamnoides L.): A comprehensive review // Front. Nutr. – 2022. – Vol. 9, P. 1036295. https://doi.org/10.3389/fnut.2022.1036295.
Ciesarová, Z., Murkovic, M., Cejpek, K., Kreps, F., Tobolková, B., Koplík, R., Burčová, Z. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review // Food Res. Int. – 2021. – Vol. 140, P. 109170. https://doi.org/10.1016/j.foodres.2020.109170.
Shah, R. K., Idate, A., Sharma, P. Comprehensive review on sea buckthorn: Biological activity and its potential uses // Pharma Innov. J. – 2021. – Vol. 10(5), P. 942-953. https://doi.org/10.22271/tpi.2021.v10.i5l.6325.
Jaśniewska, A., Diowksz, A. Wide Spectrum of Active Compounds in Sea Buckthorn (Hippophae rhamnoides) for Disease Prevention and Food Production // Antioxidants. – 2021. – Vol. 10(8), P. 1279. https://doi.org/10.3390/antiox10081279.
Yu, W., Du, Y., Li, S., Wu, L., Guo, X., Qin, W., Kuang, H. Sea buckthorn—nutritional composition, bioactivity, safety, and applications: A review // J. Food Compos. Anal. – 2024. – Vol. 127, P. 106371. https://doi.org/10.1016/j.jfca.2024.106371.
Dubey, R. K., Shukla, S., Shukla, V., Singh, S. Sea buckthorn: A potential dietary supplement with multifaceted therapeutic activities // Ind. Crops Prod. – 2024. – Vol. 210, P. 118129. https://doi.org/10.1016/j.ipha.2023.12.003.
Zalewska, E. D., Zawiślak, G., Król, E. Fungi inhabiting aboveground organs of sea buckthorn (Hippophae rhamnoides L.) in organic farming // Acta Agrobot. – 2023. – Vol. 76(1-2). https://doi.org/10.5586/aa/168497.
Lukša, J., Vepštaitė-Monstavičė, I., Yurchenko, V., Serva, S., Servienė, E. High content analysis of sea buckthorn, black chokeberry, red and white currants microbiota – A pilot study // Food Res. Int. – 2018. – Vol. 111, P. 280–288. https://doi.org/10.1016/j.foodres.2018.05.060.
Drevinska, K., Moročko-Bičevska, I. Sea buckthorn diseases caused by pathogenic fungi // Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. – 2022. – Vol. 76(4), P. 393–401. https://doi.org/10.2478/prolas-2022-0062.
Song, R., Li, J., Xie, C., Jian, W., Yang, X. An Overview of the Molecular Genetics of Plant Resistance to the Verticillium Wilt Pathogen Verticillium dahliae // Int. J. Mol. Sci. – 2020. – Vol. 21(3), P. 1120. https://doi.org/10.3390/ijms21031120.
Kumar, S., Sagar, A. Microbial associates of Hippophae rhamnoides (Seabuckthorn) // Plant Pathol. J. – 2007. – Vol. 6, P. 299–305. https://doi.org/10.3923/ppj.2007.299.305.
Xia, B., Liang, Y., Hu, J. Z., Yan, X. L., Yin, L. Q., Chen, Y., Hu, J. Y., Wu, Y. H. First Report of Sea buckthorn Stem Wilt Caused by Fusarium sporotrichioides in Gansu, China // Plant Dis. – 2021. https://doi.org/10.1094/PDIS-03-21-0627-PDN.
Mosoh, D.A., Khandel, A.K., Verma, S. et al. Effects of sterilization methods and plant growth regulators on in vitro regeneration and tuberization in Gloriosa superba (L.) // In Vitro Cell. Dev. Biol. - Plant. – 2023. – Vol. 59, P. 792–807. https://doi.org/10.1007/s11627-023-10387-9.
Arendrup, M. C., Cuenca-Estrella, M., Lass-Flörl, C., Hope, W., EUCAST-AFST. EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts // Clin. Microbiol. Infect. – 2012. – Vol. 18(9), P. 833–836. https://doi.org/10.1111/j.1469-0691.2012.03880.x.
Drevinska, K., Moročko-Bičevska, I. Sea buckthorn diseases caused by pathogenic fungi // Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. – 2022. – Vol. 76(4), P. 393–401. https://doi.org/10.2478/prolas-2022-0062.
Lukša, J., Vepštaitė-Monstavičė, I., Apšegaitė, V., Blažytė-Čereškienė, L., Stanevičienė, R., Strazdaitė-Žielienė, Ž., Servienė, E. Fungal microbiota of sea buckthorn berries at two ripening stages and volatile profiling of potential biocontrol yeasts // Microorganisms. – 2020. – Vol. 8(3), P. 456. https://doi.org/10.3390/microorganisms8030456.
Luo, X., Hu, Y., Xia, J., Zhang, K., Ma, L., Xu, Z., Ma, J. Morphological and phylogenetic analyses reveal three new species of Didymella (Didymellaceae, Pleosporales) from Jiangxi, China // J. Fungi. – 2024. – Vol. 10(1), P. 75. https://doi.org/10.3390/jof10010075.
Ali, S. A., Abdelmoaty, H. S., Ramadan, H. H., Salman, Y. B. The Endophytic Fungus Epicoccum nigrum: Isolation, Molecular Identification and Study its Antifungal Activity Against Phytopathogenic Fungus Fusarium solani // J. Microbiol. Biotechnol. Food Sci. – 2023. – Vol. 13(1), P. e10093. https://doi.org/10.55251/jmbfs.10093.